
avocado Documentation
Release 0

Lucas Meneghel Rodrigues

August 05, 2016

Contents

1 Introduction 3

2 Getting Started 5
2.1 Installing Avocado . 5
2.2 Installing Avocado-Virt . 5

3 Guest Configuration 9

4 Guest Requirements 11

5 Using your own image 13

6 Writing Avocado Virt Tests 15
6.1 Basic example: Boot test . 15
6.2 Basic example: Migrate test . 16
6.3 More to come . 16

7 Reference Guide 17
7.1 Basic avocado-virt params . 17

8 Indices and tables 19

i

ii

avocado Documentation, Release 0

Contents:

Contents 1

avocado Documentation, Release 0

2 Contents

CHAPTER 1

Introduction

Avocado-virt is a plugin for the Avocado Test Framework. It aims to provide libraries and extra functionality necessary
to run virtualization tests on Linux. We started with KVM/QEMU, but we’re certainly open to expand the coverage to
things like Xen and libvirt.

3

avocado Documentation, Release 0

4 Chapter 1. Introduction

CHAPTER 2

Getting Started

The first step towards using Avocado-Virt is, quite obviously, installing it.

2.1 Installing Avocado

Start by following the instructions on this link.

2.2 Installing Avocado-Virt

The official source for avocado-virt is the GIT repository host at ‘GitHub <https://gitub.com/avocado-
framework/avocado-virt‘_. You can clone it by running:

$ git clone https://gitub.com/avocado-framework/avocado-virt

Then install avocado-virt itself with:

$ cd avocado-virt
$ python setup.py install

You may want to use python setup.py install --user to install locally or even python setup.py
develop --user to run from the source tree.

2.2.1 Bootstrapping Avocado-Virt

After the package, a bootstrap process must be run wit the vt-bootstrap command. Example:

$ avocado virt-bootstrap

The output should be similar to:

Probing your system for test requirements
7zip present
Verifying expected SHA1 sum from http://assets-avocadoproject.rhcloud.com/static/SHA1SUM_JEOS23
Expected SHA1 sum: 177468b8e5fcb7b9c5982a6bc21ff45df6d80b2f
Compressed JeOS image found in /home/<user>/avocado/data/images/jeos-23-64.qcow2.7z, with proper SHA1
Uncompressing the JeOS image to restore pristine state. Please wait...
Successfully uncompressed the image
Your system appears to be all set to execute tests

5

http://avocado-framework.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado

avocado Documentation, Release 0

Another addition you’ll notice is that the avocado subcommand run now has extra parameters that you can pass:

$ avocado run -h
...
virtualization testing arguments:

--qemu-bin QEMU_BIN Path to a custom qemu binary to be tested. Current
path: /bin/qemu-kvm

--qemu-dst-bin QEMU_DST_BIN
Path to a destination qemu binary to be tested. Used
as incoming qemu in migration tests. Current path:
/bin/qemu-kvm

--qemu-img-bin QEMU_IMG_BIN
Path to a custom qemu-img binary to be tested. Current
path: /bin/qemu-img

--qemu-io-bin QEMU_IO_BIN
Path to a custom qemu-io binary to be tested. Current
path: /bin/qemu-io

--guest-image-path GUEST_IMAGE_PATH
Path to a guest image to be used in tests. Current
path: /home/<user>/avocado/data/images/jeos-23-64.qcow2

--guest-user GUEST_USER
User that avocado should use for remote logins.
Current: root

--guest-password GUEST_PASSWORD
Password for the user avocado should use for remote
logins. You may omit this if SSH keys are setup in the
guest. Current: 123456

--take-screendumps Take regular QEMU screendumps (PPMs) from VMs under
test. Current: False

--record-videos Encode videos from VMs under test. Implies --take-
screendumps. Current: False

--qemu-template [QEMU_TEMPLATE]
Create qemu command line from a template

That’s right, the virt plugin gives you new options on the runner specific to the QEMU related tests. For example, you
can provide --qemu-bin to tell your tests that you want a specific QEMU binary instead of whatever the runner
could find looking in the system PATH or environment variables.

Now, after you bootstrapped your tests, you may want to look for some examples
on how to build your tests. We have a repo with example virtualization tests in
https://github.com/avocado-framework/avocado-virt-tests.git. Cloning this repo will
allow you to run the example tests and study them:

$ git clone https://github.com/avocado-framework/avocado-virt-tests.git
Cloning into 'avocado-virt-tests'...
remote: Counting objects: 15, done.
remote: Total 15 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (15/15), done.
Checking connectivity... done.
$ cd avocado-virt-tests/
$ avocado run qemu/boot.py
JOB ID : <id>
JOB LOG : /home/<user>/avocado/job-results/job-<timestamp-shortid>/job.log
TESTS : 1
(1/1) qemu/boot.py:BootTest.test_boot: PASS (23.13 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/<user>/avocado/job-results/job-<timestamp-shortid>/html/results.html
TIME : 23.13 s

6 Chapter 2. Getting Started

avocado Documentation, Release 0

With this info, we are covering the basics. We’ll cover setup details and the available test API in later sessions.

2.2. Installing Avocado-Virt 7

avocado Documentation, Release 0

8 Chapter 2. Getting Started

CHAPTER 3

Guest Configuration

By default, avocado-virt uses an x86_64 minimal guest image based on the latest stable version of Fedora available at
a given time. The image file is a compressed qcow2 image located on my image repository that is downloaded, should
you choose to run the sub command virt-bootstrap.

If you use avocado with default settings, the test runner is going to uncompress the pris-
tine image of this so-called JeOS before each test. You might change this behavior in config
virt.restore.disable_for_{test|job} (/etc/avocado/conf.d/virt.conf) or via multi-
plexer params disable_restore_image_{test|job} in /plugins/virt/guest/ namespace if you
want to completely skip the backup restore process.

Or, you may opt for using your own guest image in your tests.

9

avocado Documentation, Release 0

10 Chapter 3. Guest Configuration

CHAPTER 4

Guest Requirements

The JeOS is a fairly small guest, so your guest should be generally fine, as long as it does have open SSH running on
port 22 after boot, for all the tests that require SSH connections (that is, tests that at some point call the VM method
.login_remote(). That said, it is hard to keep requirements documented with precision, given that the tests and
the plugin are going to evolve in scope and features. Please feel free to send us patches to this documentation file to
correct any inaccuracies.

11

avocado Documentation, Release 0

12 Chapter 4. Guest Requirements

CHAPTER 5

Using your own image

You can use your own image by specifying the following options:

• --guest-image-path - You can provide this option with an arbitrary path to a QEMU disk image file with
your guest. You can use any of the file formats specified, such as qcow2, qed or even raw image formats.

• --guest-user - If your image has a specific user set up previously that you want avocado to use when
logging into the remote guest, please provide this option. Avocado will inform the default values used in the
avocado run --help output.

• --guest-password - If your image has a specific password for the user set up previously that you want
avocado to use when logging into the remote guest, please provide this option. Avocado will inform the default
values used in the avocado run --help output. Note that a previous setup of ssh keys on that guest can
let you ignore that option entirely.

Next, we’ll learn how to write a simple test, using the avocado basic APIs.

13

avocado Documentation, Release 0

14 Chapter 5. Using your own image

CHAPTER 6

Writing Avocado Virt Tests

6.1 Basic example: Boot test

Avocado virt tests are similar to non-virt ones, they only differ on that they use some specialized libraries, that let you
use special virt features.

Here’s an example of a basic virt testing, a test that starts QEMU with a guest image, then it’ll try to establish an ssh
connection to this guest:

from avocado.virt import test

class BootTest(test.VirtTest):

def test_boot(self):
self.vm.power_on()
self.vm.login_remote()

def tearDown(self):
if self.vm:

self.vm.power_off()

The base class for the test is avocado.virt.test.VirtTest instead of the base avocado.test. The reason
for this is that the VirtTest class can make the params from the test runner available for tests, and provide other
convenience methods for your tests.

If you chose to not override or extend the default virt test setUp() method, you’ll have at your disposal a ba-
sic vm object in self.vm. The VM is not started (powered on) yet, and you need to start it yourself. Calling
self.vm.power_on starts the QEMU process, then from that point forwards we are just waiting for the VM to be
active. The proof that the VM started and the guest OS is healthy is that we can establish a remote session (SSH on
linux guests) to it, by using the login_remote method. That method is going to wait for a default 60 seconds until
the SSH connection is established, and fail in case the connection can’t be established.

If we have an SSH connection, all is good, the test passed, and we’re going to clean things up as a good practice. The
cleanup method is going to run a shutdown command in the remote connection, and then we proceed to shutting
down the VM (end the QEMU process), through the power_off method.

If that goes fine as well, the test passed and everybody is happy. We ended our test with PASS. If any of the operations
described above FAIL, avocado is going to proceed accordingly and FAIL the test.

15

avocado Documentation, Release 0

6.2 Basic example: Migrate test

Now, what if I want to migrate the state of a QEMU VM to another QEMU process on that very same machine? Here’s
what a live migration test looks like:

from avocado.virt import test

class MigrationTest(test.VirtTest):

def test_migrate(self):
self.vm.power_on()
migration_mode = self.params.get('migration_mode', 'tcp')
for _ in xrange(self.params.get('migration_iterations', 4)):

self.vm.migrate(migration_mode)
self.vm.login_remote()

def cleanup(self):
if self.vm:

self.vm.power_off()

Fortunately, most of the migration logic is wrapped up in the method vm.migrate. Here we modeled things after
the concept of live migration, so you have a single vm object, that when migrated keeps working just as it did work
before, with no service interruption (it doesn’t care that the VM state was passed on to another QEMU process). The
method will clone the command line of the current VM, add the appropriate snippets for incoming migration, start the
new process, and call the appropriate migrate command in the QMP monitor of the source VM. After it detects the
migration is over, we might repeat the process again migration_iteration times (here it has the default value
of 4).

6.3 More to come

This is a basic guide, as the plugin is in heavy developmemt. Soon we’ll have more APIs and cover more cases.

16 Chapter 6. Writing Avocado Virt Tests

CHAPTER 7

Reference Guide

This guide presents information on the Avocado-virt basic design and its internals.

7.1 Basic avocado-virt params

Avocado-virt uses test params to affect the environment independently on the test code. This can be used to reproduce
the same steps on different setup, for example various disk drivers. You can set these via multiplex YAML file.

Table of supported params:

Params path Params key Description
/plugins/virt/guest/* dis-

able_restore_image_test
Don’t restore the image after each test

/plugins/virt/guest/* image_path Path to the guest image
/plugins/virt/guest/* password Guest remote login password
/plugins/virt/guest/* shell_prompt Regexp of the guest remote command line
/plugins/virt/guest/* user Guest remote login name
/plug-
ins/virt/qemu/migrate/*

timeout Migration timeout

/plug-
ins/virt/qemu/paths/*

qemu_bin Path to the QEMU executable file

/plug-
ins/virt/qemu/paths/*

qemu_img_bin Path to the qemu-img executable file

/plug-
ins/virt/qemu/paths/*

qemu_io_bin Path to the qemu-io executable file

/plug-
ins/virt/qemu/template/*

contents Template of the QEMU command to be run instead of
autogenerated one

/plug-
ins/virt/screendumps/*

enable Enable screendump service

/plug-
ins/virt/screendumps/*

interval Interval between screendumps

/plugins/virt/videos/* enable Encode screendumps into video after the test
/plugins/virt/videos/* jpeg_quality Quality of the screendump image postprocessing

Note: Some of these values can be modified in config files and/or overridden on the command line. To view the
setting on your system run avocado multiplex -s -c with avocado-virt enabled.

Note: Not all params are used in every run, some of them depends on each other or on features touched in the test

17

avocado Documentation, Release 0

(for example when your test doesn’t use qemu-io executing the test with various values makes no sense. Changing the
qemu_bin on the other hand makes the test executed on different QEMU versions.)

18 Chapter 7. Reference Guide

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

19

	Introduction
	Getting Started
	Installing Avocado
	Installing Avocado-Virt

	Guest Configuration
	Guest Requirements
	Using your own image
	Writing Avocado Virt Tests
	Basic example: Boot test
	Basic example: Migrate test
	More to come

	Reference Guide
	Basic avocado-virt params

	Indices and tables

